/*
 * InspIRCd -- Internet Relay Chat Daemon
 *
 *   Copyright (C) 2009-2010 Daniel De Graaf <danieldg@inspircd.org>
 *   Copyright (C) 2008 Robin Burchell <robin+git@viroteck.net>
 *   Copyright (C) 2007 Dennis Friis <peavey@inspircd.org>
 *   Copyright (C) 2007 Craig Edwards <craigedwards@brainbox.cc>
 *
 * This file is part of InspIRCd.  InspIRCd is free software: you can
 * redistribute it and/or modify it under the terms of the GNU General Public
 * License as published by the Free Software Foundation, version 2.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */


#pragma once

#include "inspircd.h"

#include "utils.h"

/*
 * The server list in InspIRCd is maintained as two structures
 * which hold the data in different ways. Most of the time, we
 * want to very quicky obtain three pieces of information:
 *
 * (1) The information on a server
 * (2) The information on the server we must send data through
 *     to actually REACH the server we're after
 * (3) Potentially, the child/parent objects of this server
 *
 * The InspIRCd spanning protocol provides easy access to these
 * by storing the data firstly in a recursive structure, where
 * each item references its parent item, and a dynamic list
 * of child items, and another structure which stores the items
 * hashed, linearly. This means that if we want to find a server
 * by name quickly, we can look it up in the hash, avoiding
 * any O(n) lookups. If however, during a split or sync, we want
 * to apply an operation to a server, and any of its child objects
 * we can resort to recursion to walk the tree structure.
 * Any socket can have one of five states at any one time.
 *
 * CONNECTING:	indicates an outbound socket which is
 *							waiting to be writeable.
 * WAIT_AUTH_1:	indicates the socket is outbound and
 * 							has successfully connected, but has not
 *							yet sent and received SERVER strings.
 * WAIT_AUTH_2:	indicates that the socket is inbound
 * 							but has not yet sent and received
 *							SERVER strings.
 * CONNECTED:   represents a fully authorized, fully
 *							connected server.
 * DYING:       represents a server that has had an error.
 */
enum ServerState { CONNECTING, WAIT_AUTH_1, WAIT_AUTH_2, CONNECTED, DYING };

struct CapabData
{
	reference<Link> link;			/* Link block used for this connection */
	reference<Autoconnect> ac;		/* Autoconnect used to cause this connection, if any */
	std::string ModuleList;			/* Required module list of other server from CAPAB */
	std::string OptModuleList;		/* Optional module list of other server from CAPAB */
	std::string ChanModes;
	std::string UserModes;
	std::map<std::string,std::string> CapKeys;	/* CAPAB keys from other server */
	std::string ourchallenge;		/* Challenge sent for challenge/response */
	std::string theirchallenge;		/* Challenge recv for challenge/response */
	int capab_phase;			/* Have sent CAPAB already */
	bool auth_fingerprint;			/* Did we auth using SSL certificate fingerprint */
	bool auth_challenge;			/* Did we auth using challenge/response */

	// Data saved from incoming SERVER command, for later use when our credentials have been accepted by the other party
	std::string description;
	std::string sid;
	std::string name;
	bool hidden;
};

/** Every SERVER connection inbound or outbound is represented by an object of
 * type TreeSocket. During setup, the object can be found in Utils->timeoutlist;
 * after setup, MyRoot will have been created as a child of Utils->TreeRoot
 */
class TreeSocket : public BufferedSocket
{
	struct BurstState;

	std::string linkID;			/* Description for this link */
	ServerState LinkState;			/* Link state */
	CapabData* capab;			/* Link setup data (held until burst is sent) */
	TreeServer* MyRoot;			/* The server we are talking to */
	int proto_version;			/* Remote protocol version */

	/** True if we've sent our burst.
	 * This only changes the behavior of message translation for 1202 protocol servers and it can be
	 * removed once 1202 support is dropped.
	 */
	bool burstsent;

	/** Checks if the given servername and sid are both free
	 */
	bool CheckDuplicate(const std::string& servername, const std::string& sid);

	/** Send all ListModeBase modes set on the channel
	 */
	void SendListModes(Channel* chan);

	/** Send all known information about a channel */
	void SyncChannel(Channel* chan, BurstState& bs);

	/** Send all users and their oper state, away state and metadata */
	void SendUsers(BurstState& bs);

	/** Send all additional info about the given server to this server */
	void SendServerInfo(TreeServer* from);

	/** Find the User source of a command given a prefix and a command string.
	 * This connection must be fully up when calling this function.
	 * @param prefix Prefix string to find the source User object for. Can be a sid, a uuid or a server name.
	 * @param command The command whose source to find. This is required because certain commands (like mode
	 * changes and kills) must be processed even if their claimed source doesn't exist. If the given command is
	 * such a command and the source does not exist, the function returns a valid FakeUser that can be used to
	 * to process the command with.
	 * @return The command source to use when processing the command or NULL if the source wasn't found.
	 * Note that the direction of the returned source is not verified.
	 */
	User* FindSource(const std::string& prefix, const std::string& command);

	/** Finish the authentication phase of this connection.
	 * Change the state of the connection to CONNECTED, create a TreeServer object for the server on the
	 * other end of the connection using the details provided in the parameters, and finally send a burst.
	 * @param remotename Name of the remote server
	 * @param remotesid SID of the remote server
	 * @param remotedesc Description of the remote server
	 * @param hidden True if the remote server is hidden according to the configuration
	 */
	void FinishAuth(const std::string& remotename, const std::string& remotesid, const std::string& remotedesc, bool hidden);

	/** Authenticate the remote server.
	 * Validate the parameters and find the link block that matches the remote server. In case of an error,
	 * an appropriate snotice is generated, an ERROR message is sent and the connection is closed.
	 * Failing to find a matching link block counts as an error.
	 * @param params Parameters they sent in the SERVER command
	 * @return Link block for the remote server, or NULL if an error occurred
	 */
	Link* AuthRemote(const parameterlist& params);

	/** Write a line on this socket with a new line character appended, skipping all translation for old protocols
	 * @param line Line to write without a new line character at the end
	 */
	void WriteLineNoCompat(const std::string& line);

 public:
	const time_t age;

	/** Because most of the I/O gubbins are encapsulated within
	 * BufferedSocket, we just call the superclass constructor for
	 * most of the action, and append a few of our own values
	 * to it.
	 */
	TreeSocket(Link* link, Autoconnect* myac, const std::string& ipaddr);

	/** When a listening socket gives us a new file descriptor,
	 * we must associate it with a socket without creating a new
	 * connection. This constructor is used for this purpose.
	 */
	TreeSocket(int newfd, ListenSocket* via, irc::sockets::sockaddrs* client, irc::sockets::sockaddrs* server);

	/** Get link state
	 */
	ServerState GetLinkState() const { return LinkState; }

	/** Get challenge set in our CAPAB for challenge/response
	 */
	const std::string& GetOurChallenge();

	/** Get challenge set in our CAPAB for challenge/response
	 */
	void SetOurChallenge(const std::string &c);

	/** Get challenge set in their CAPAB for challenge/response
	 */
	const std::string& GetTheirChallenge();

	/** Get challenge set in their CAPAB for challenge/response
	 */
	void SetTheirChallenge(const std::string &c);

	/** Compare two passwords based on authentication scheme
	 */
	bool ComparePass(const Link& link, const std::string &theirs);

	/** Clean up information used only during server negotiation
	 */
	void CleanNegotiationInfo();

	CullResult cull() CXX11_OVERRIDE;
	/** Destructor
	 */
	~TreeSocket();

	/** Construct a password, optionally hashed with the other side's
	 * challenge string
	 */
	std::string MakePass(const std::string &password, const std::string &challenge);

	/** When an outbound connection finishes connecting, we receive
	 * this event, and must send our SERVER string to the other
	 * side. If the other side is happy, as outlined in the server
	 * to server docs on the inspircd.org site, the other side
	 * will then send back its own server string.
	 */
	void OnConnected() CXX11_OVERRIDE;

	/** Handle socket error event
	 */
	void OnError(BufferedSocketError e) CXX11_OVERRIDE;

	/** Sends an error to the remote server, and displays it locally to show
	 * that it was sent.
	 */
	void SendError(const std::string &errormessage);

	/** Recursively send the server tree with distances as hops.
	 * This is used during network burst to inform the other server
	 * (and any of ITS servers too) of what servers we know about.
	 */
	void SendServers(TreeServer* Current, TreeServer* s);

	/** Returns module list as a string, filtered by filter
	 * @param filter a module version bitmask, such as VF_COMMON or VF_OPTCOMMON
	 */
	std::string MyModules(int filter);

	/** Send my capabilities to the remote side
	 */
	void SendCapabilities(int phase);

	/* Isolate and return the elements that are different between two lists */
	void ListDifference(const std::string &one, const std::string &two, char sep,
		std::string& mleft, std::string& mright);

	bool Capab(const parameterlist &params);

	/** Send one or more FJOINs for a channel of users.
	 * If the length of a single line is more than 480-NICKMAX
	 * in length, it is split over multiple lines.
	 */
	void SendFJoins(Channel* c);

	/** Send G, Q, Z and E lines */
	void SendXLines();

	/** Send all known information about a channel */
	void SyncChannel(Channel* chan);

	/** This function is called when we want to send a netburst to a local
	 * server. There is a set order we must do this, because for example
	 * users require their servers to exist, and channels require their
	 * users to exist. You get the idea.
	 */
	void DoBurst(TreeServer* s);

	/** This function is called when we receive data from a remote
	 * server.
	 */
	void OnDataReady() CXX11_OVERRIDE;

	/** Send one or more complete lines down the socket
	 */
	void WriteLine(const std::string& line);

	/** Handle ERROR command */
	void Error(parameterlist &params);

	/** (local) -> SERVER
	 */
	bool Outbound_Reply_Server(parameterlist &params);

	/** (local) <- SERVER
	 */
	bool Inbound_Server(parameterlist &params);

	/** Handle IRC line split
	 */
	void Split(const std::string &line, std::string& prefix, std::string& command, parameterlist &params);

	/** Process complete line from buffer
	 */
	void ProcessLine(std::string &line);

	void ProcessConnectedLine(std::string& prefix, std::string& command, parameterlist& params);

	/** Handle socket timeout from connect()
	 */
	void OnTimeout() CXX11_OVERRIDE;
	/** Handle server quit on close
	 */
	void Close() CXX11_OVERRIDE;

	/** Fixes messages coming from old servers so the new command handlers understand them
	 */
	bool PreProcessOldProtocolMessage(User*& who, std::string& cmd, std::vector<std::string>& params);
};